Abstract

In the realm of nonlinear dynamics, the Belousov-Zhabotinsky reaction system has long held the fascination of researchers. The Belousov-Zhabotinsky system continues to be an active area of research, offering insights into the fundamental principles of nonlinear dynamics in complex systems. To deepen our understanding of this intricate system, we introduce a pioneering approach to tackle the time fractional Belousov-Zhabotinsky system, employing the Caputo and Atangana-Baleanu Caputo fractional derivatives with the double Laplace method. The solution we obtained is in the form of series which helps in investigating the accuracy of the proposed method. The primary advantage of the proposed technique lies in the low amount of calculations required and produce high degree of precision in the solutions. Furthermore, the existence and uniqueness of the solution are investigated thereby enhancing the overall credibility of our study. To visually represent our results, we present a series of 2D and 3D graphical representations that vividly illustrate the behavior of the model and the impact of changing the fractional order derivative and the time on the obtained solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.