Abstract

Abstract Monotone matrices are stochastic matrices that satisfy the monotonicity conditions as introduced by Daley in 1968. Monotone Markov chains are useful in modeling phenomena in several areas. Most previous work examines the embedding problem for Markov chains within the entire set of stochastic transition matrices, and only a few studies focus on the embeddability within a specific subset of stochastic matrices. This article examines the embedding in a discrete-time monotone Markov chain, i.e., the existence of monotone matrix roots. Monotone matrix roots of ( 2 × 2 ) \left(2\times 2) monotone matrices are investigated in previous work. For ( 3 × 3 ) \left(3\times 3) monotone matrices, this article proves properties that are useful in studying the existence of monotone roots. Furthermore, we demonstrate that all ( 3 × 3 ) \left(3\times 3) monotone matrices with positive eigenvalues have an m m th root that satisfies the monotonicity conditions (for all values m ∈ N , m ≥ 2 m\in {\mathbb{N}},m\ge 2 ). For monotone matrices of order n > 3 n\gt 3 , diverse scenarios regarding the matrix roots are pointed out, and interesting properties are discussed for block diagonal and diagonalizable monotone matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.