Abstract
The main focus of this paper is on the development of reliability measures for a repairable multi-state system which operates under dynamic regimes under the discrete-time hypothesis. The switching process of regimes is governed by a Markov chain, and the functioning process of the system follows another Markov chain with different transition probability matrices under different regimes. In terms of two chains as above, a new Markov chain is constructed to depict the evolution process of the dynamic system. For the regime consideration, some novel reliability indices are essential and firstly introduced in this paper. By means of hierarchical partitions for the new state space, Ion-Channel modeling theory and discrete-time Markov chain, the traditional and novel reliability and availability functions for the system under random regimes are easily obtained with the closed form solutions, such as two types of system reliabilities, two types of system point availabilities, two types of system multiple-point availabilities and the associated system multi-interval availabilities and so on. In addition, some probability distributions of sojourn times we are interested in are discussed and computed here. Finally, a numerical example is given to illustrate the results obtained in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.