Abstract

Stochastic hybrid systems involve the coupling of discrete, continuous, and probabilistic phenomena, in which the composition of continuous and discrete variables captures the behavior of physical systems interacting with digital, computational devices. Because of their versatility and generality, methods for modeling, analysis, and verification of stochastic hybrid systems (SHS) have proved invaluable in a wide range of applications, including biology, smart grids, air traffic control, finance, and automotive systems. The problems of verification and of controller synthesis over SHS can be algorithmically studied using methodologies and tools developed in computer science, utilizing proper symbolic models describing the overall behaviors of the SHS. A promising direction to address formal verification and synthesis against complex logic specifications, such as PCTL and BLTL, is the use of abstraction with finitely many states. This thesis is devoted to formal abstractions for verification and synthesis of SHS by bridging the gap between stochastic analysis, computer science, and control engineering. A SHS is first considered as a discrete time Markov process over a general state space, then is abstracted as a finite-state Markov chain to be formally verified against the desired specification. We generate finite abstractions of general state-space Markov processes based on the partitioning of the state space, which provide a Markov chain as an approximation of the original process. We put forward a novel adaptive and sequential gridding algorithm based on non-uniform quantization of the state space that is expected to conform to the underlying dynamics of the model and thus to mitigate the curse of dimensionality unavoidably related to the partitioning procedure. PCTL and BLTL properties are defined over trajectories of a system. Examples of such properties are probabilistic safety and reach-avoid specifications. While the developed techniques are applicable to a wide arena of probabilistic properties, the thesis focuses on the study of the particular specification probabilistic safety or invariance, over a finite horizon. Abstraction of controlled discrete-time Markov processes to Markov decision processes over finite sets of states is also studied in the thesis. The proposed abstraction scheme enables us to solve the problem of obtaining a maximally safe Markov policy for the Markov decision process and synthesize a control policy for the original model. The total error is quantified which is due to the abstraction procedure and caused by exporting the result back to the original process. The abstraction error hinges on the regularity of the stochastic kernel of the process, i.e. its Lipschitz continuity. Furthermore, this thesis extends the results in the following directions: 1) Partially degenerate stochastic processes suffer from non-smooth probabilistic evolution of states. The stochastic kernel of such processes does not satisfy Lipschitz continuity assumptions which requires us to develop new techniques specialized for this class of processes. We have shown that the probabilistic invariance problem over such processes can be separated into two parts: a deterministic reachability analysis, and a probabilistic invariance problem that depends on the outcome of the first. This decomposition approach leads to computational improvements. 2) The abstraction approach have leveraged piece-wise constant interpolations of the stochastic kernel of the process. We extend this approach for systems with higher degrees of smoothness in their probabilistic evolution and provide approximation methods via higher-order interpolations that are aimed at requiring less computational effort. Using higher-order interpolations (versus piece-wise constant ones) can be beneficial in terms of obtaining tighter bounds on the approximation error. Furthermore, since the approximation procedures depend on the partitioning of the state space, higher-order schemes display an interesting tradeoff between more parsimonious representations versus more complex local computation. From the application point of view, an example of SHS is the model of thermostatically controlled loads (TCLs), which captures the evolution of temperature inside a building. This thesis proposes a new, formal two-step abstraction procedure to generate a finite stochastic dynamical model as the aggregation of the dynamics of a population of TCLs. The approach relaxes the limiting assumptions employed in the literature by providing a model based on the natural probabilistic evolution of the single TCL temperature. We also describe a dynamical model for the time evolution of the abstraction, and develop a set-point control strategy aimed at reference tracking over the total power consumption of the TCL population. The abstraction algorithms discussed in this thesis have been implemented as a MATLAB tool FAUST2 (abbreviation for “Formal Abstractions of Uncountable-STate STochastic processes”). The software is freely available for download at http://sourceforge.net/projects/faust2/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.