Abstract
It is studied the possibility of modeling of undular bores on the basis of the second approximation of the shallow water theory. The classical differential Green-Naghdi model cannot be used for correct numerical simulation of wave flows with undular bores. The reason for this is that this model is derived within the framework of the long-wave approximation, by virtue of which the characteristic depth of the stream is much less than the characteristic length of the surface waves, which is not performed in the undular bore front. An integro-differential Green-Naghdi model is proposed for numerical simulation of undular bores. In this model we used the divergent differential form of the continuity equation and the integral conservation law of horizontal momentum. This model is derived from two-dimensional integral conservation laws of mass and momentum, describing a plane-parallel flow of an ideal incompressible fluid over a horizontal bottom. The basis of this conclusion is the concept of a local hydrostatic approximation, which generalizes the concept of the long-wave approximation and is used to justify the applicability of shallow water models to describe wave flows with the hydraulic bores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.