Abstract
We discuss a novel model for analyzing the working of Genetic Algorithms (GAs), when the objective function is a function of unitation. The model is exact (not approximate), and is valid for infinite populations. Functions of unitation depend only on the number of 1's in any string. Hence, we only need to model the variations in the distribution of strings with respect to the number of 1's in the strings. We introduce the notion of a Binomial Distributed Population (BDP) as the building block of our model, and we show that the effect of uniform crossover on BDPs is to generate two other BDPs. We demonstrate that a population with any general distribution may be decomposed into several BDPs. We also show that a general multipoint crossover may be considered as a composition of several uniform crossovers. Based on these results, the effects of mutation and crossover on the distribution of strings have been characterized, and the model has been defined. GASIM-a Genetic Algorithm Simulator for functions of unitation-has been implemented based on the model, and the exactness of the results obtained from GASIM has been verified using actual Genetic Algorithm runs. The time complexity of the GA simulator derived from the model is O(l(3)) (where l is the string length), a significant improvement over previous models with exponential time complexities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.