Abstract

Abstract In this paper quantum Hamilton–Jacobi theory are exploited to model and visualize single-electron spin motion at zero-point energy state. Quantum Hamilton equations of motion are derived and solved analytically for an electron moving in a constant magnetic field. The resulting electron’s trajectories explain explicitly why the electron has quantized spin and orbital angular momenta and why the electron has an intrinsic spin ℏ /2 with a g factor of 2. This quantum spin model, unlike the usual one expressed by the abstract spin matrices, is fully based on the measurable motion trajectory of electron and may hopefully provide us a succinct guideline to visualize single-electron spin motion in laboratory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.