Abstract
Mammalian ribonucleotide reductase (RNR) activity has been reported to be nonmonotonic in ATP. If many nonlinear models are to be fitted to such data automatically as part of a model search process, use of the same initial parameter values across all models can lead to too many poor fitting, monotonic least squares fits, i.e., false model rejections. We propose that such fits can be rescued by using as initial parameter estimates the final estimates of neighboring models that do have nonmonotonic fits; here models are neighbors if complexes that they represent differ by at most one ligand. We use this approach to show that troughs in RNR activity versus ATP can be fitted similarly well by models that do or do not demand a third ATP binding site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.