Abstract
Ribonucleotide reductase is a highly regulated, rate-limiting activity in the synthesis of DNA. A previous study has shown that the Escherichia coli enzyme is inhibited by the clinically important antitumor agent cis-diamminedichloroplatinum(II) (DDP), and this has led to the hypothesis that ribonucleotide reductase is an important site of action for this chemotherapeutic agent. This hypothesis has been directly tested in this investigation. We observed that DDP inhibits the mammalian ribonucleotide reductase, with 50% inhibition occurring at 0.3 mM. Unlike the E. coli enzyme where only one of the two protein components is targeted by DDP, we observed that both of the mammalian proteins (R1 and R2) were sites for the inhibitory activity of the drug. Colony-forming experiments, enzyme activity studies, and analyses of R1 and R2 message levels in mutant cell lines containing either high levels of ribonucleotide reductase activity or exhibiting resistance to the cytotoxic effects of DDP were used to further investigate the potential role of ribonucleotide reductase in DDP cytotoxic action and drug resistance. These studies did not support a hypothesis formulated in the earlier investigation that inhibition of ribonucleotide reductase is an important component of DDP cytotoxic activity or that it is a major participant in DDP resistance mechanisms. From a biological point of view, DDP is a very active drug, and in addition to its cytotoxic effects it is capable of inducing a variety of cellular changes. Whether or not the inhibition of mammalian ribonucleotide reductase activity that we have described in this study plays a role in mediating any of these other effects remains to be determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemistry and cell biology = Biochimie et biologie cellulaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.