Abstract

We consider a variant of Gamow’s liquid drop model with an anisotropic surface energy. Under suitable regularity and ellipticity assumptions on the surface tension, Wulff shapes are minimizers in this problem if and only if the surface energy is isotropic. We show that for smooth anisotropies, in the small nonlocality regime, minimizers converge to the Wulff shape inC1-norm and quantify the rate of convergence. We also obtain a quantitative expansion of the energy of any minimizer around the energy of a Wulff shape yielding a geometric stability result. For certain crystalline surface tensions we can determine the global minimizer and obtain its exact energy expansion in terms of the nonlocality parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.