Abstract
We study the stability of surfaces trapped between two parallel planes with free boundary on these planes. The energy functional consists of anisotropic surface energy, wetting energy, and line tension. Equilibrium surfaces are surfaces with constant anisotropic mean curvature. We study the case where the Wulff shape is of “product form”, that is, its horizontal sections are all homothetic and have a certain symmetry. Such an anisotropic surface energy is a natural generalization of the area of the surface. In particular, we study the stability of parts of anisotropic Delaunay surfaces which arise as equilibrium surfaces. They are surfaces of the same product form of the Wulff shape. We show that, for these surfaces, the stability analysis can be reduced to the case where the surface is axially symmetric and the functional is replaced by an appropriate axially symmetric one. Moreover, we obtain necessary and sufficient conditions for the stability of anisotropic sessile drops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.