Abstract
We explain the construction of minimal tilting complexes for objects of highest weight categories and we study in detail the minimal tilting complexes for standard objects and simple objects. For certain categories of representations of complex simple Lie algebras, affine Kac-Moody algebras and quantum groups at roots of unity, we relate the multiplicities of indecomposable tilting objects appearing in the terms of these complexes to the coefficients of Kazhdan-Lusztig polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.