Abstract

An affine semigroup is a finitely generated subsemigroup of $(\mathbb Z_{\ge 0}^d, +)$, and a numerical semigroup is an affine semigroup with $d = 1$. A growing body of recent work examines shifted families of numerical semigroups, that is, families of numerical semigroups of the form $M_n = \langle n + r_1, \ldots, n + r_k \rangle$ for fixed $r_1, \ldots, r_k$, with one semigroup for each value of the shift parameter $n$. It has been shown that within any shifted family of numerical semigroups, the size of any minimal presentation is bounded (in fact, this size is eventually periodic in $n$). In this paper, we consider shifted families of affine semigroups, and demonstrate that some, but not all, shifted families of 4-generated affine semigroups have arbitrarily large minimal presentations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.