Abstract
Wilf Conjecture on numerical semigroups is a question posed by Wilf in 1978 and is an inequality connecting the Frobenius number, embedding dimension and the genus of the semigroup. The conjecture is still open in general. We prove that this Wilf inequality is preserved under gluing of numerical semigroups. If the numerical semigroups minimally generated by [Formula: see text] and [Formula: see text] satisfy the Wilf inequality, then so does their gluing which is minimally generated by [Formula: see text]. We discuss the extended Wilf’s Conjecture in higher dimensions for certain affine semigroups and prove an analogous result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.