Abstract
In an instance of the (directed) Max Leaf Tree (MLT) problem we are given a vertex-weighted (di)graph G(V,E,w) and the goal is to compute a subtree with maximum weight on the leaves. The weighted Connected Max Cut (CMC) problem takes in an undirected edge-weighted graph G(V,E,w) and seeks a subset S⊆V such that the induced graph G[S] is connected and ∑e∈δ(S)w(e) is maximized.We obtain a constant approximation algorithm for MLT when the weights are chosen from {0,1}, which in turn implies a Ω(1/logn) approximation for the general case. We show that the MLT and CMC problems are related and use the algorithm for MLT to improve the factor for CMC from Ω(1/log2n) (Hajiaghayi et al., ESA 2015) to Ω(1/logn).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.