Abstract

In this paper we study approximation algorithms for multi-route cut problems in undirected graphs. In these problems the goal is to find a minimum cost set of edges to be removed from a given graph such that the edge-connectivity (or node-connectivity) between certain pairs of nodes is reduced below a given threshold K. In the usual cut problems the edge connectivity is required to be reduced below 1 (i.e. disconnected). We consider the case of K = 2 and obtain poly-logarithmic approximation algorithms for fundamental cut problems including single-source, multiway-cut, multicut, and sparsest cut. These cut problems are dual to multi-route flows that are of interest in fault-tolerant networks flows. Our results show that the flow-cut gap between 2-route cuts and 2-route flows is poly-logarithmic in undirected graphs with arbitrary capacities. 2-route cuts are also closely related to well-studied feedback problems and we obtain results on some new variants. Multi-route cuts pose interesting algorithmic challenges. The new techniques developed here are of independent technical interest, and may have applications to other cut and partitioning problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call