Abstract
Principles of mathematical models as tools in engineering and science are discussed in relation to turbulent combustion modeling. A model is presented for the rate of combustion which takes into account the intermittent appearance of reacting species in turbulent flames. This model relates the rate of combustion to the rate of dissipation of eddies and expresses the rate of reaction by the mean concentration of a reacting specie, the turbulent kinetic energy and the rate of dissipation of this energy. The essential features of this model are that it does not call for predictions of fluctuations of reacting species and that it is applicable to premixed as well as diffusion flames. The combustion model is tested on both premixed and diffusion flames with good results. Special attention is given to soot formation and combustion in turbulent flames. Predictions are made for two C 2 H 2 turbulent diffusion flames by incorporating both the above combustion model and the model for the rate of soot formation developed by Tesner et al., as well as previous observations by Magnussen concerning the behavior of soot in turbulent flames. The predicted results are in close agreement with the experimental data. All predictions in the present paper have been made by modeling turbulence by the k -∈ model. Buoyancy is taken into consideration in the momentum equations. Effects of terms containing density fluctuations have not been included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.