Abstract
AbstractThis paper provides an overview of magnetostrictive transducer technology. The bi-directional coupling between the magnetic and mechanical states of a magnetostrictive material provides a transduction mechanism that can be used both for actuation and sensing. The current interest in design of adaptive smart structures, coupled with the advent of materials that exhibit high sensor figures of merit, such as Metglas and giant magnetostrictive materials such as Terfenol-D has lead to a renewed interest in the engineering of optimized magnetostrictive transducer designs. A survey of recent applications for giant magnetostrictive materials as both sensors and actuators and their use in smart structure applications will be presented along with a brief discussion of some pertinent device design issues. Examples of magnetostrictive actuation used to produce displacements, force and acoustic waves are summarized. Magnetostrictive sensor configurations that measure motion, stress or force, torque, magnetic fields and target characteristics are discussed. A very brief look at transducer modeling and experimental results is included and schematics of a number of actuator and sensor configurations are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.