Abstract
Hydrodynamic systems arising in swarming modeling include nonlocal forces in the form of attractive–repulsive potentials as well as pressure terms modeling strong local repulsion. We focus on the case where there is a balance between nonlocal attraction and local pressure in presence of confinement in the whole space. Under suitable assumptions on the potentials and the pressure functions, we show the global existence of weak solutions for the hydrodynamic model with viscosity and linear damping. By introducing linear damping in the system, we ensure the existence and uniqueness of stationary solutions with compactly supported density, fixed mass and center of mass. The associated velocity field is zero in the support of the density. Moreover, we show that global weak solutions converge for large times to the set of these stationary solutions in a suitable sense. In particular cases, we can identify the limiting density uniquely as the global minimizer of the free energy with the right mass and center of mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.