Abstract
In this paper we consider the Navier-Stokes-Korteweg equations for a viscous compressible fluid with capillarity effects in three space dimensions. We prove global existence of finite energy weak solutions for large initial data. Contrary to previous results regarding this system, vacuum regions are allowed in the definition of weak solutions and no additional damping terms are considered. The convergence of the approximating solutions is obtained by introducing suitable truncations in the momentum equations of the velocity field and the mass density at different scales and use only the a priori bounds obtained by the energy and the BD entropy. Moreover, the approximating solutions enjoy only a limited amount of regularity, and the derivation of the truncations of the velocity and the density is performed by a suitable regularization procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.