Abstract
For the Hermitian eigenproblems, under proper assumption on an initial approximation to the desired eigenvector, we prove local quadratic convergence of the inexact simplified Jacobi–Davidson method when the involved relaxed correction equation is solved by a standard Krylov subspace iteration, which particularly leads to local cubic convergence when the relaxed correction equation is solved to a prescribed precision proportional to the norm of the current residual. These results are valid for the interior as well as the extreme eigenpairs of the Hermitian eigenproblem and, hence, generalize the results by Bai and Miao (2017) from the extreme eigenpairs to the interior ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.