Abstract
We investigate the existence and properties of Lipschitz solutions for some forward–backward parabolic equations in all dimensions. Our main approach to existence is motivated by reformulating such equations into partial differential inclusions and relies on a Baire's category method. In this way, the existence of infinitely many Lipschitz solutions to certain initial-boundary value problem of those equations is guaranteed under a pivotal density condition. Under this framework, we study two important cases of forward–backward anisotropic diffusion in which the density condition can be realized and therefore the existence results follow together with micro-oscillatory behavior of solutions. The first case is a generalization of the Perona–Malik model in image processing and the other that of Höllig's model related to the Clausius–Duhem inequality in the second law of thermodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.