Abstract
The Perona–Malik equation is an ill-posed forward–backward parabolic equation with some application in image processing. In this paper, we study the Perona–Malik type equation on a ball in an arbitrary dimension n and show that there exist infinitely many radial weak solutions to the homogeneous Neumann boundary problem for smooth nonconstant radially symmetric initial data. Our approach is to reformulate the n-dimensional equation into a one-dimensional equation, to convert the one-dimensional problem into an inhomogeneous partial differential inclusion problem, and to apply a Baire's category method to the differential inclusion to generate infinitely many solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.