Abstract

AbstractIn this paper, we are concerned with the non-existence of positive solutions of a Hartree–Poisson system: \begin{equation*} \left\{ \begin{aligned} &-\Delta u=\left(\frac{1}{|x|^{n-2}}\ast v^p\right)v^{p-1},\quad u \gt 0\ \text{in} \ \mathbb{R}^{n},\\ &-\Delta v=\left(\frac{1}{|x|^{n-2}}\ast u^q\right)u^{q-1},\quad v \gt 0\ \text{in} \ \mathbb{R}^{n}, \end{aligned} \right. \end{equation*} where $n \geq3$ and $\min\{p,q\} \gt 1$. We prove that the system has no positive solution under a Serrin-type condition. In addition, the system has no positive radial classical solution in a Sobolev-type subcritical case. In addition, the system has no positive solution with some integrability in this Sobolev-type subcritical case. Finally, the relation between a Liouville theorem and the estimate of boundary blowing-up rates is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.