Abstract

Accurate quantification of effective antigens of different serotypes is crucial for quality control of multivalent vaccines but challenging. A simple and rapid capillary zone electrophoresis (CZE) method was developed for on-line separation and quantification of foot-and-mouth disease virus (FMDV) antigens in monovalent and bivalent FMDV vaccines. The FMDV peak identity in CZE was demonstrated by the study of FMDV dissociation combined with high performance size exclusion chromatography (HPSEC) analysis. After optimizing CZE conditions including UV detecting wavelength, injection volume, and separation voltage, both serotype A and O FMDV showed good reproducibility (RSD <5%) and linear responses (R2=0.999) between the peak area and FMDV content in the concentration range of 15-400 μg/mL. The two serotypes of FMDV with similar size had different migration time in CZE according to their different zeta potential, which allows them to be separated and quantified, with accuracy of <10% relative error. CZE was then successfully applied for antigen quantification of commercial O monovalent and A/O bivalent FMDV vaccines. Compared with HPSEC, CZE was not only able to quantify each serotype of FMDV, but also free from interference of nucleic acids impurities. In summary, the CZE can be a simple, rapid, and reliable tool for quality control of monovalent and bivalent FMDV vaccines. The CZE method can also be further extended to the quality control of other multivalent virus and virus like particle vaccines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.