Abstract

The aim of this work was to monitor in-line and at a real time, the solid-state forms during pharmaceuticals manufacturing. It concerns the dehydration behavior and the solid-state transitions of theophylline in an agitated vacuum contact dryer. First, a near infrared spectroscopy (NIRS) method was performed using a reflectance diffuse probe to measure the in-line and in-situ exact composition of the mixture of different forms of theophylline and water content during drying. A multivariate modeling has been investigated to build a robust model which can predict four components at the same time during drying process. The XRPD analysis was used as a reference method in the process of calibration of NIRS. The indicators of the accuracy in quantitative spectral analysis confirm the robustness of the model and the efficiency of the method of calibration. Second, the kinetics of solid state transformations were investigated. It was shown that the dehydration advanced first by the formation of the metastable anhydrate and after a lag time of the stable one. Once the stable form appeared, formation of the metastable form came to an end. The temperature was found out to be the main factor controlling the overall process rate but also the final contents of the stable and metastable anhydrates for the considered dryer and operating conditions range. Finally, a semi-empirical drying model was proposed and significant quantitative differences were found, particularly at the product temperature which was probably caused by the excessive simplicity of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call