Abstract

We show that the countable axiom of choice CAC strictly implies the statements “Lindelöf metric spaces are second countable” “Lindelöf metric spaces are separable”. We also show that CAC is equivalent to the statement: “If (X,T) is a Lindelöf topological space with respect to the base ℬ, then (X,T) is Lindelöf”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.