Abstract

AbstractIt is well known that, in a topological space, the open sets can be characterized using ?lter convergence. In ZF (Zermelo‐Fraenkel set theory without the Axiom of Choice), we cannot replace filters by ultrafilters. It is proven that the ultra?lter convergence determines the open sets for every topological space if and only if the Ultrafilter Theorem holds. More, we can also prove that the Ultra?lter Theorem is equivalent to the fact that uX = kX for every topological space X, where k is the usual Kuratowski closure operator and u is the Ultra?lter Closure with uX (A):= {x ∈ X: (∃ U ultrafilter in X)[U converges to x and A ∈ U ]}. However, it is possible to built a topological space X for which uX ≠ kX, but the open sets are characterized by the ultra?lter convergence. To do so, it is proved that if every set has a free ultra?lter, then the Axiom of Countable Choice holds for families of non‐empty finite sets. It is also investigated under which set theoretic conditions the equality u = k is true in some subclasses of topological spaces, such as metric spaces, second countable T0‐spaces or {ℝ} (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call