Abstract

Light affine logic is a variant of linear logic with a polynomial cut-elimination procedure. We study the extensional expressive power of light affine logic with respect to a general notion of encoding of functions in the setting of the Curry–Howard correspondence. We consider light affine logic with both fixpoints of formulae and second-order quantifiers, and analyse the properties of polytime soundness and polytime completeness for various fragments of this system. In particular, we show that the implicative propositional fragment is not polytime complete if we place some reasonable conditions on the encodings. Following previous work, we show that second order leads to polytime unsoundness. We then introduce simple constraints on second-order quantification and fixpoints, and prove that the fragments obtained are polytime sound and complete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.