Abstract
We study certain (two-sided) nil ideals and nilpotent ideals in a Lie nilpotent ring R. Our results lead us to showing that the prime radical rad(R) of R comprises the nilpotent elements of R, and that if L is a left ideal of R, then L + rad(R) is a two-sided ideal of R. This in turn leads to a Lie nilpotent version of Cohen's theorem, namely if R is a Lie nilpotent ring and every prime (two-sided) ideal of R is finitely generated as a left ideal, then every left ideal of R containing the prime radical of R is finitely generated (as a left ideal). For an arbitrary ring R with identity we also consider its so-called n-th Lie center Z n (R), n ≥ 1, which is a Lie nilpotent ring of index n. We prove that if C is a commutative submonoid of the multiplicative monoid of R, then the subring ⟨Z n (R) ∪ C⟩ of R generated by the subset Z n (R) ∪ C of R is also Lie nilpotent of index n.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.