Abstract
It is well known and immediate that in an associative ring a nilpotent one-sided ideal generates a nilpotent two-sided ideal. The corresponding open question for alternative rings was raised by M. Slater [6, p. 476]. Hitherto the question has been answered only in the case of a trivial one-sided ideal J (i.e., in case J2 = 0) [5]. In this note we solve the question in its entirety by showing that a nilpotent one-sided ideal K of an alternative ring generates a nilpotent two-sided ideal. In the process we find an upper bound for the index of nilpotency of the ideal generated. The main theorem provides another proof of the fact that a semiprime alternative ring contains no nilpotent one-sided ideals. Finally we note the analogous result for locally nilpotent one-sided ideals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.