Abstract
In this paper, we study two interesting variants of the classical bin packing problem, called Lazy Bin Covering (LBC) and Cardinality Constrained Maximum Resource Bin Packing (CCMRBP) problems. For the offline LBC problem, we first prove the approximation ratio of the First-Fit-Decreasing and First-Fit-Increasing algorithms, then present an APTAS. For the online LBC problem, we give a competitive analysis for the algorithms of Next-Fit, Worst-Fit, First-Fit, and a modified HARMONIC M algorithm. The CCMRBP problem is a generalization of the Maximum Resource Bin Packing (MRBP) problem Boyar et al. (2006) [1]. For this problem, we prove that its offline version is no harder to approximate than the offline MRBP problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.