Abstract
It is proved that each distance graph on a plane has an induced subgraph with a chromatic number that is at most 4 containing over 91% of the vertices of the original graph. This result is used to obtain the asymptotic growth rate for a threshold probability that a random graph is isomorphic to a certain distance graph on a plane. Several generalizations to larger dimensions are proposed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have