Abstract
This paper investigates the relation between colored HOMFLY-PT and Kauffman homology, $\text{SO}(N)$ quantum $6j$-symbols and $(a,t)$-deformed $F_K$. First, we present a simple rule of grading change which allows us to obtain the $[r]$-colored quadruply-graded Kauffman homology from the $[r^2]$-colored quadruply-graded HOMFLY-PT homology for thin knots. This rule stems from the isomorphism of the representations $(\mathfrak{so}_6,[r]) \cong (\mathfrak{sl}_4,[r^2])$. Also, we find the relationship among $A$-polynomials of SO and SU-type coming from a differential on Kauffman homology. Second, we put forward a closed-form expression of $\text{SO}(N)(N\geq 4)$ quantum $6j$-symbols for symmetric representations, and calculate the corresponding $\text{SO}(N)$ fusion matrices for the cases when representations $R = [1],[2]$. Third, we conjecture closed-form expressions of $(a,t)$-deformed $F_K$ for the complements of double twist knots with positive braids. Using the conjectural expressions, we derive $t$-deformed ADO polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.