Abstract

We show that a certain natural class of tangles 'generate the collection of all tangles with respect to composition'. This result is motivated by, and describes the reasoning behind, the 'uniqueness assertion' in Jones' theorem on the equivalence between extremal subfactors of finite index and what we call 'subfactor planar algebras' here. This result is also used to identify the manner in which the planar algebras corresponding to M⊂M1 and Nop⊂Mop are obtained from that of N⊂M. Our results also show that 'duality' in the category of extremal subfactors of finite index extends naturally to the category of 'general' planar algebras (not necessarily finite-dimensional or spherical or connected or C*, in the terminology of Jones).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.