Abstract

Natural image statistics indicate that we should use nonconvex norms for most regularization tasks in image processing and computer vision. Still, they are rarely used in practice due to the challenge of optimization. Recently, iteratively reweighed $\ell_1$ minimization (IRL1) has been proposed as a way to tackle a class of nonconvex functions by solving a sequence of convex $\ell_2$-$\ell_1$ problems. We extend the problem class to the sum of a convex function and a (nonconvex) nondecreasing function applied to another convex function. The proposed algorithm sequentially optimizes suitably constructed convex majorizers. Convergence to a critical point is proved when the Kurdyka--Łojasiewicz property and additional mild restrictions hold for the objective function. The efficiency and practical importance of the algorithm are demonstrated in computer vision tasks such as image denoising and optical flow. Most applications seek smooth results with sharp discontinuities. These are achieved by combining nonconvexity with higher order regularization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.