Abstract

Natural image statistics indicate that we should use non-convex norms for most regularization tasks in image processing and computer vision. Still, they are rarely used in practice due to the challenge to optimize them. Recently, iteratively reweighed ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> minimization has been proposed as a way to tackle a class of non-convex functions by solving a sequence of convex ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> - ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> problems. Here we extend the problem class to linearly constrained optimization of a Lipschitz continuous function, which is the sum of a convex function and a function being concave and increasing on the non-negative orthant (possibly non-convex and non-concave on the whole space). This allows to apply the algorithm to many computer vision tasks. We show the effect of non-convex regularizers on image denoising, deconvolution, optical flow, and depth map fusion. Non-convexity is particularly interesting in combination with total generalized variation and learned image priors. Efficient optimization is made possible by some important properties that are shown to hold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.