Abstract

The numerous applications of the linear complementarity problem (LCP) in, e.g., the solution of linear and convex quadratic programming, free boundary value problems of fluid mechanics, and moving boundary value problems of economics make its efficient numerical solution a very imperative and interesting area of research. For the solution of the LCP, many iterative methods have been proposed, especially, when the matrix of the problem is a real positive definite or an $H_{+}$-matrix. In this work we assume that the real matrix of the LCP is an $H_{+}$-matrix and solve it by using a new method, the scaled extrapolated block modulus algorithm, as well as an improved version of the very recently introduced modulus-based matrix splitting modified AOR iteration method. As is shown by numerical examples, the two new methods are very effective and competitive with each other. (A corrected PDF is attached to this article.)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.