Abstract

In an earlier paper, the author has given some necessary and sufficient conditions for the convergence of iterative methods for solving the linear complementarity problem. These conditions may be viewed as global in the sense that they apply to the methods regardless of the constant vector in the linear complementarity problem. More precisely, the conditions characterize a certain class of matrices for which the iterative methods will converge, in a certain sense, to a solution of the linear complementarity problem for all constant vectors. In this paper, we improve on our previous results and establish necessary and sufficient conditions for the convergence of iterative methods for solving each individual linear complementarity problem with a fixed constant vector. Unlike the earlier paper, our present analysis applies only to the symmetric linear complementarity problem. Various applications to a strictly convex quadratic program are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.