Abstract
Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algorithms developed by Gallager (1962), Battail et al. (1979), and Hagenauer et al. (1996). Based on their results, we propose a decoding algorithm which only uses parity check vectors of minimum weight. We give the relation of this iterative decoding to one-step majority-logic decoding, and interpret it as gradient optimization. It is shown that the used parity check set defines the region where the iterative decoding decides on a particular codeword. We make plausible that, in almost all cases, the iterative decoding converges to a codeword after some iterations. We derive a computationally efficient implementation using the minimal trellis representing the used parity check set. Simulations illustrate that our algorithm gives results close to soft decision maximum likelihood (SDML) decoding for many code classes like BCH codes. Reed-Muller codes, quadratic residue codes, double circulant codes, and cyclic finite geometry codes. We also present simulation results for product codes and parallel concatenated codes based on block codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.