Abstract

In this paper, we introduce a new iterative learning control (ILC) method, which enables learning from different tracking control tasks. The proposed method overcomes the imitation of traditional ILC in that, the target trajectories of any two consecutive iterations can be completely different. For non-linear systems with time-varying and time-invariant parametric uncertainties, the new learning method works effectively to nullify the tracking error. To facilitate the learning control system design and analysis, in the paper we use a composite energy function (CEF) index, which consists of a positive scalar function and L2 norm of the function approximation error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.