Abstract
The classical problem of removable singularities is considered for solutions to the stationary Navier–Stokes system in dimension n≥3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n\\ge 3$$\\end{document} and an old theorem of Shapiro (TAMS 187:335–363, 1974) is recovered and extended to solutions in a half ball vanishing on the flat boundary. Moreover, for n=4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n=4$$\\end{document} it is proved that there are not distributional solutions, smooth away from the singularity and such that u(x)=O(|x|-1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$u(x)=O(|x|^{-1})$$\\end{document}.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have