Abstract
Given a linear programming problem with the objective function coefficients vector c and a feasible solution x0 to this problem, a corresponding inverse linear programming problem is to modify the vector c as little as possible to make x0 form an optimal solution to the linear programming problem. The modifications can be measured by different distances. In this article, we consider the inverse linear programming problem under the bottleneck-type weighted Hamming distance. We propose an algorithm based on the binary search technique to solve the problem. At each iteration, the algorithm has to solve a linear programming problem. We also consider the inverse minimum cost flow problem as a special case of the inverse linear programming problems and specialize the proposed method for solving this problem in strongly polynomial time. The specialized algorithm solves a shortest path problem at each iteration. It is shown that its complexity is better than the previous one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.