Abstract

We consider an inverse linear programming (LP) problem in which the parameters in both the objective function and the constraint set of a given LP problem need to be adjusted as little as possible so that a known feasible solution becomes the optimal one. We formulate this problem as a linear complementarity constrained minimization problem. With the help of the smoothed Fischer–Burmeister function, we propose a perturbation approach to solve the inverse problem and demonstrate its global convergence. An inexact Newton method is constructed to solve the perturbed problem and numerical results are reported to show the effectiveness of the approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.