Abstract

In this paper, lower and upper approximations of intuitionistic fuzzy sets with respect to an intuitionistic fuzzy approximation space are first defined. Properties of intuitionistic fuzzy approximation operators are examined. Relationships between intuitionistic fuzzy rough set approximations and intuitionistic fuzzy topologies are then discussed. It is proved that the set of all lower approximation sets based on an intuitionistic fuzzy reflexive and transitive approximation space forms an intuitionistic fuzzy topology; and conversely, for an intuitionistic fuzzy rough topological space, there exists an intuitionistic fuzzy reflexive and transitive approximation space such that the topology in the intuitionistic fuzzy rough topological space is just the set of all lower approximation sets in the intuitionistic fuzzy reflexive and transitive approximation space. That is to say, there exists an one-to-one correspondence between the set of all intuitionistic fuzzy reflexive and transitive approximation spaces and the set of all intuitionistic fuzzy rough topological spaces. Finally, intuitionistic fuzzy pseudo-closure operators in the framework of intuitionistic fuzzy rough approximations are investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.