Abstract
The marine community has witnessed a remarkable growth of underwater robotic vehicles (URVs) for undersea exploration and exploitation in recent decades. Yet, it is critical to intelligently diagnose the fault and evaluate the risk of the onboard system, and render critical decision to ensure the safety of the URV with high-value assets. In this paper, a dedicated two-layer fault treatment system including risk analysis subsystem and intelligent decision subsystem is proposed to enhance the onboard safety of the URV. First, a hierarchical fault tree model of the URV is built by integrating the state information of sensors, actuators and running status. Second, in the risk analysis subsystem, the onboard system risk is analyzed based on the adaptive learning and fuzzy inference capabilities of the Mamdani fuzzy neural network (MFNN). Third, in the safety decision subsystem, the risk level of the URV is evaluated by adopting the maximum membership and threshold principles, which enables the intelligent decision to take critical operation and ensure the safety of the URV. Finally, the proposed fault treatment system is validated by numerical simulation and hardware in loop test. Experimental results demonstrate the feasibility and efficiency of the intelligent fault treatment system for the URV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.