Abstract

In a finite undirected graph, an apple consists of a chordless cycle of length at least 4, and an additional vertex which is not in the cycle and sees exactly one of the cycle vertices. A graph is apple-free if it contains no induced subgraph isomorphic to an apple. Apple-free graphs are a common generalization of chordal graphs, claw-free graphs and cographs and occur in various papers. The Maximum Weight Independent Set (MWS) problem is efficiently solvable on chordal graphs, on cographs as well as on claw-free graphs. In this paper, we obtain partial results on some subclasses of apple-free graphs where our results show that the MWS problem is solvable in polynomial time. The main tool is a combination of clique separators with modular decomposition. Our algorithms are robust in the sense that there is no need to recognize whether the input graph is in the given graph class; the algorithm either solves the MWS problem correctly or detects that the input graph is not in the given class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.