Abstract
Bicliques of graphs have been studied extensively, partially motivated by the large number of applications. In this paper we improve Prisner’s upper bound on the number of maximal bicliques (Combinatorica, 20, 109–117, 2000) and show that the maximum number of maximal bicliques in a graph on n vertices is Θ(3 n/3). Our major contribution is an exact exponential-time algorithm. This branching algorithm computes the number of distinct maximal independent sets in a graph in time O(1.3642 n ), where n is the number of vertices of the input graph. We use this counting algorithm and previously known algorithms for various other problems related to independent sets to derive algorithms for problems related to bicliques via polynomial-time reductions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.