Abstract
In physical VLSI design, network design (wiring) is the most time-consuming phase. For solving global wiring problems, we propose to first compute from the layout geometry a graph that preserves all shortest paths between pairs of relevant points, and then to operate on that graph for computing shortest paths, Steiner minimal tree approximations, or the like. For a set of points and a set of simple orthogonal polygons as obstacles in the plane, withn input points (polygon corner or other) altogether, we show how a shortest paths preserving graph of sizeO(n logn) can be computed in timeO(n logn) in the worst case, with spaceO(n). We illustrate the merits of this approach with a simple example: If the length of a longest edge in the graph is bounded by a polynomial inn, an assumption that is clearly fulfilled for graphs derived from VLSI layout geometries, then a shortest path can be computed in timeO(n logn log logn) in the worst case; this result improves on the known best one ofO(n(logn)3/2).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have