Abstract

We present a hybrid radial basis function (RBF) sigmoid neural network with a three-step training algorithm that utilizes both global search and gradient descent training. The algorithm used is intended to identify global features of an input-output relationship before adding local detail to the approximating function. It aims to achieve efficient function approximation through the separate identification of aspects of a relationship that are expressed universally from those that vary only within particular regions of the input space. We test the effectiveness of our method using five regression tasks; four use synthetic datasets while the last problem uses real-world data on the wave overtopping of seawalls. It is shown that the hybrid architecture is often superior to architectures containing neurons of a single type in several ways: lower mean square errors are often achievable using fewer hidden neurons and with less need for regularization. Our global-local artificial neural network (GL-ANN) is also seen to compare favorably with both perceptron radial basis net and regression tree derived RBFs. A number of issues concerning the training of GL-ANNs are discussed: the use of regularization, the inclusion of a gradient descent optimization step, the choice of RBF spreads, model selection, and the development of appropriate stopping criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.